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Gravity from the ground up

Solutions to selected exercises

Chapter 1

Exercise 1.1.1: Speed of a falling body [page 3]

Using the fact that the acceleration of gravity on Earth is ¢ = 9.8 m s72, calculate the speed a ball would have
after falling for two seconds, if dropped from rest. Calculate its speed if it were thrown downwards with an
initial speed of 10 m s~*. Calculate its speed if it were initially thrown upwards with a speed of 10ms~*. Is it
falling or still rising after 2s?

Solution 1.1.1

When the ball falls from rest, its speed is given by Equation 1.3 with v, = 0:
—98ms 2 x2s=-19.6ms".

We take negative quantities to indicate the downward direction, so g and the speed are negative in this
calculation. When the initial speed is v, = —10m s~ (negative because it is downwards), we add this to the
first result to get —29.6 ms~'. When the ball is thrown upwards, the initial speed of v, = 10m s~" reduces the
speed acquired from gravity; the result is —9.6ms™'. This is still negative, so the ball is falling down after
two seconds. If the initial speed upwards had been larger, say 30m s™*, then after two seconds the ball would

still be rising at a speed of (30 — 19.6)ms™", or 10.4ms™*.

Exercise 1.2.1: Distance fallen by a body [page 4]

For the falling ball in Exercise 1.1.1, calculate the distance the ball falls in each of the cases posed in that
exercise.

Solution 1.2.1

When the ball falls from rest, its distance is given by Equation 1.6 with v, and d, set to zero:

x (—9.8ms?) x 45> = —19.6 m.

DN | =

Again, we take negative quantities to indicate the downward direction, so g and the distance traveled are
negative in this calculation. To this basic number we must add the term v,t for the different situations. (We
can take d, to be zero, since the problem asks how far the ball falls from its release point.) In the second
case, the initial speed of —10ms~* (downwards) adds —10m s~ x 25 = —20m to the distance, giving a fall
of —39.6m. When the ball is thrown upwards, we add a positive 20m to the basic distance, giving a net
displacement of 0.4 m. This is positive, which means that the ball has not quite fallen back to its initial release
height after two seconds.
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Exercise 1.3.1: Small steps in speed and distance [page 5]

Suppose that at the n'" time-step t,, the vertical speed is v, and the vertical distance above the ground is
h,. Show that at the next time-step t,,., = t, + At, the vertical speed is v, ,, = v, — gAt. Using our method
of approximating the distance traveled by using the average speed over the interval, show that at the next
time-step the height will be

Bt = hp + 24(vy + Upp1) At = hy + v, At — Lag(AL)?.

Solution 1.3.1

Since the vertical speed decreases by gAt in each time-interval At, the expression for v, , is straightforward.
The first expression for h,,, is based on our approximation that distance = average speed x time. The average
speed is, of course, %(vn + v,41). The second expression is the result of substituting our original answer for
U, 4, into this.

Exercise 1.3.2: Suicide shot [page 5]

What is the minimum range of a cannonball fired with a given speed V', and at what angle should it be aimed
in order to achieve this minimum?

Solution 1.3.2

Zero: fire it vertically. Then run away.

Exercise 1.3.3: Mazimum range by algebra [page 5]

For readers interested in verifying the guess we made above from the numerical data, here is how to calculate
the range at 45° algebraically. The range is limited by the amount of time the cannonball stays in the air.
Fired at 45° with speed V, how long does it take to reach its maximum height, which is where its vertical
speed goes to zero? Then how long does it take to return to the ground? What is the total time in the air?
How far does it go horizontally during this time? This is the maximum range.

Solution 1.3.3

At 45°, the initial vertical speed is V/\/§ To reach a speed of zero, it must ascend for a time t,, such that
V/V2 = gt.,. (We take g positive here.) This means t,, = V/(gv/2). The time it takes the cannonball
to fall back down is the same, so that the total time is ¢.,, = 2¢,, = \/§V/g. During all this time, the
cannonball has been travelling with a horizontal speed of V/ V2 as well. This means it travels a total distance
d=1t.V/ V2 =V2 /g. This is what we inferred from the computer results.

Exercise 1.3.4: Best angle of fire [page 5]

Prove that 45° is the firing angle that gives the longest range by calculating the range for any angle and then
finding what angle makes it a maximum. Use the same method as in Exercise 1.3.3 on page 5.

Solution 1.3.4

Let the angle of fire be 6, as measured up from the ground as in Figure 1.2. The initial vertical speed
is then Vsinf, and by the argument in the solution to Aexrefaex:maxrange, the time spent in the air is
tor = 2V sinf/g. The horizontal speed is V cosf, and so the distance travelled is then d = ¥ sinf cosf. By
a standard trigonometric identity, the product 2sin# cosf is sin 2. The maximum of the sine function occurs
when its argument is 90°, and in our case the argument is 26. Therefore, the maximum range occurs for an
angle 8 = 90°/2 = 45°.



Gravity from the ground up

Solutions to selected exercises

Chapter 2

Exercise 2.2.1: Redshift to a satellite [page 16]

Calculate the redshift gh/c* if h is the distance from the ground to a satellite in low-Earth orbit, 300km.
Suppose the “light” is actually a radio wave with a frequency of 10** Hz. How many cycles would the transmitter
emit if it ran for one day? How many fewer would be received in one day by the satellite? How long did it
take the transmitter to generate these “extra” cycles?

Solution 2.2.1

The redshift is 3.3 x 107**. One day is 86400 s, during which the transmitter emits 10** cycles per second of
radio waves, leading to a total of 8.64 x 10*® cycles. Because the redshift is the fractional amount by which the
frequency is reduced, the receiver counts 3.3 x 107" x 8.64 x 10" = 2.85 x 10° fewer cycles in the same amount
of time at the receiver, leading to the conclusion that the transmitter is running slower than the receiver. The
transmitter generated these cycles in 2.85 x 10°/(10"* Hz = 3 us. These calculations really only apply to a
“satellite” that is at rest at the height of 300 km; the orbital motion of a real satellite introduces other Doppler
effects and effects due to special relativity that are discussed in Chapter 15.
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Gravity from the ground up

Solutions to selected exercises

Chapter 3

Exercise 3.1.1: Vectors [page 22]

Quantities that have a value but no direction are called scalars. Decide whether the following physical
quantities should be described mathematically by scalars or by vectors: (a) the mass of a rock; (b) the electric
force on a charged particle; (¢) the temperature of a room; (d) the slope of a hill.

Solution 3.1.1

(i) The mass of a rock is a pure number, with no directional information; it is a scalar. (ii) The electric force on
a charged particle has a direction as well as a size, so it must be described by a vector. (iii) The temperature
of a room again has no directional information; for example, it is the same no matter what direction one holds
the thermomenter. So it is a scalar. (iw) The slope of a hill can be described by a vector pointing in the
direction of steepest ascent, whose length is proportional to the steepness, say equal to the height the slope
rises in a unit horizontal distance.

Exercise 3.1.2: Period of a satellite orbiting near the Earth’s surface [page 22]

Use Equation 3.1 on page 19 to calculate the orbital period of a satellite near the Earth. Assume that the
acceleration of gravity at the height of the satellite is the same as on the ground, g = 9.8 ms=2. Take the
radius of the orbit to be the radius of the Earth, 6400 km, plus the height of the satellite above the Earth,
300 km.

Solution 3.1.2

In every calculation, it is important to check that one is using the right units. In this case, be careful to
express the radius of the orbit in meters, not the given value of km. The orbit is given as 6700 km, which is
6.7 x 10°m. Now, multiplying g by R gives 9.8ms 2 x 6.7 x 10°m = 6.57 x 10" m?s*—2. (Notice how I
have kept the units in the expression, multiplying them in the same way as the numbers.) Equation 3.1 on
page 19 tells us to take the square root of this to get the orbital speed: V' = 8.1 x 10°m s™', where again the
units have been “square-rooted” too. The circumference of the orbit is 27rR = 4.21 x 10" m, so the orbital
period is this circumference divided by the speed: P = 5.2 x 10*s. Dividing by 60 to convert this to minutes
gives 86.6 min. The velocity quoted in the text is slightly smaller (7.9km s *), and the period slightly longer
(90 min), because in fact gravity is slighly weaker at the height of the satellite.
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Gravity from the ground up

Solutions to selected exercises

Chapter 4

Exercise 4.1.1: Inverse-square-law constant [page 29]

From Equation 4.2 on page 27, show that the constant k in Equation 4.4 on page 29 is (27)?*/ (P*/R®).
Evaluate this to give 1.327 x 10" km?®s~2.

Solution 4.1.1
Solve Equation 4.2 on page 27 for a:

42 P2\ !
a = — <—) .
R \ R3

Then solve Equation 4.4 on page 29 for k: k = R?a. Then put our new expression for a into this to get

P2\t
42

The value of P?/R? from Table 4.2 on page 28 can then be used to obtain k.

Exercise 4.1.2: Measuring the mass of the Sun and the Earth [page 29]

The Newtonian law of gravity, Equation 4.1 on page 27, tells us the force on a body of mass M, exerted
by the Sun (mass M, in the equation). Combine this with Newton’s second law, F' = ma, to show that
the acceleration of the body of mass M, is a = GM,/r*. Use this to show that the force-law constant & in
Equation 4.4 on page 29 is k = GM,. Convert this value of k to more conventional units using meters to find
k = 1.327 x 10**m?®s~2. (Hint: since 1km = 10°m, it follows that 1 = 10° m km~*. Multiply by the cube of
this form of the number 1 to convert the units for k.) Now use the value of G = 6.6725 x 10~** m®s~2kg~* to
find the mass of the Sun. Do a similar calculation for the value of Kepler’s constant for the Moon, given in
Table 4.2 on page 28, to find the mass of the Earth.

Solution 4.1.2

The motion of mass M, is governed by the equation F' = M,a, from which we have a = F//M,. Since the force
of gravity is F = GM,M,/r?, we find a = GM, /r?. By comparison with Equation 4.4 on page 29, which says
that a = k/r?, we see that k = GM,. Since our value of k uses units of km and s, which are convenient for
the computer program but not conventional, and since the conventional units for G involve m, s, and kg, we
need to convert units. Unit conversions are always done by multiplying by some version of the number 1. In
our case, if we start from

1km = 10°m,
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and divide by the left-hand-side, we get (multiplying and dividing units algebraically)
1=10"mkm™".
We can multiply the cube of this into our value of k to get

E = 1.327x10"km?s™2 x 1°
= 1.327x 10" km?s™? x  10°m®km~3
= 1.327x 10" m?s 2,

where again we have cancelled units algebraically. Since k = GM,, it follows that M, = k/G, so that
M, =1327Tx10%m’s™? x (6.6725x 10 "' m®s?kg™'),

which gives 1.989 x 10°° kg. For the Earth, the value of k, inferred as above from the Moon’s orbit as given in
Table 4.2 on page 28 and then converted to conventional units, is £ = 4.012 x 10 m®s~*. Dividing by G gives
the Earth’s mass, 6.01 x 10**kg. This is close to but not actually equal to the true mass of the Earth, because
the numbers we use assume a circular orbit for the Moon. But the closeness of our answer to the right one
shows how the method is used.

Exercise 4.3.1: Area of Colorado [page 35]

The American state of Colorado is a spherical rectangle of the kind we have just described. Its northern and
southern boundaries have latitude 41° and 37°, respectively. Its eastern and western boundaries have longitude
102° and approximately 109.1°, respectively. Given that the radius of the Earth is 6.3782 x 10° m, what is the
area of Colorado?

Solution 4.3.1

The difference in latitude angles is 4° and the difference in longitudes is 7.1°. The cosine of the latitude in the
center of the state is cos 39° = 0.77715. Then Equation 4.11 on page 35 gives an area of 2.7 x 10! m?. This
is of course a first approximation to the area, since the formula works only for small rectangles over which the
cosine factor does not change much. We can test this by asking what the cosine is at the northern boundary:
cos41° = 0.75471. This differs by about 3% from the value at the center, so we can expect that our value for
the area of Colorado is accurate at about the 3% level. There are other approximations involved here as well.
For one thing, Colorado is not at sea level; its mean elevation is between 1 and 2km higher, so we should
have used a larger radius. This correction is less than 0.1%, however. A second additional correction is that
Colorado is not a smooth spherical patch: we have neglected the roughness of Colorado due to its mountains!
We can’t estimate this correction without more data on the topography of the mountains, but it is probably
not as large as our first uncertainty of 3%, because the mountains are typically less than 2 km above the mean
elevation of the state.

Exercise 4.4.1: Light deflection by other bodies [page 38]

Any gravitating body will deflect light. Estimate, using Equation 4.13 on page 38 above, the amount of
deflection experienced by a light ray just grazing the surface of the following bodies: (a) Jupiter, whose radius
is 7.1 x 10*km; (b) the Earth; (c) a black hole of any mass; and (d) you.

Solution 4.4.1

We use Equation 4.13 on page 38. We need to know M and d in each case. (a) Getting the mass of Jupiter
from Table 4.2 on page 28 and using the given balue of R gives a deflection angle of 4 x 10~®radians, or
8 milliarcsec (1 milliarcsec is 10~% arcseconds).

(b) For the Earth we get 1.4 x 10~% radians, or 0.3 milliarcsec.

(c) A black hole has a radius R, = 2GM/c?, so it follows that the deflection angle 2GM /c*d with d = R,
always evaluates to 1radians, or 57°, regardless of the mass of the black hole. However, this is well beyond the
small-angle approximation, so all we can say is that the deflection will be large. In fact, light that gets near



to the horizon can circle around the hole many times before getting away again, leading to deflection angles
much larger than 360°.

(d) To make yourself approximate a spherical gravitating body, imaging crouching into a ball of radius
about R = 0.5m. Assuming your mass is 50 kg, we find that the deflection is 1.5 x 107*° radians, or about
3 x 1072° arcsec.
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Gravity from the ground up

Solutions to selected exercises

Chapter 5

Exercise 5.1.1: Testing the binomial approzimation [page 43]

Use a pocket calculator to verify that Equation 5.2 on page 43 gives a good approximation for small e. For the
following values of € and n, evaluate the approximate value 1 + ne, the exact value (1 + €)*, the error (their
difference) and the relative error of the approximation, which is defined as the error divided by the exact value:
(a) n =2,¢=0.01,0.1, 1.0; (b) n = 3.5, ¢ = 0.01, 0.1; and (c) n = —2, ¢ = 0.01, 0.1. (Recall that negative
powers indicate the reciprocal, so that (14 ¢€)=> = 1/(1 +¢)*.)

Solution 5.1.1

In the table of answers below, the error is defined as (1 + €)™ — (1 + ne). The relative error is the error divided
by (1+¢€)".

n € Exact Approximate Error Relative error
2 0.01 1.0201 1.02 0.0001 9.8 x 10~°
2 0.1 1.21 1.2 0.01 0.0083

2 1.0 4 3 1 0.25

3.5 0.01 1.0354397 1.03 0.0054397 0.00525351
3.5 0.1 1.3959646 1.35 0.04596458 0.0329268
-2 0.01 0.980296 0.98 0.000296 0.000302
—2 0.1 0.8264463 0.8 0.026446 0.032

The relative error is about 1% or less for most of these values. The approximation is clearly terrible for
€ = 1, but of course our derivation would lead us to expect this.
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Gravity from the ground up

Solutions to selected exercises

Chapter 6

Exercise 6.1.1: Escaping from anywhere [page 53]

Calculate the escape speed from the Solar System for a satellite starting at the average distance from the Sun
of each of the planets listed in Table 4.2 on page 28. In each case, find the ratio of this speed to the average
speed of the planet (column 5 of the table).

Solution 6.1.1

For the escape speed we use the formula v,...,. = (2GMg/r)/?, with values of G and Mg taken from the
Appendix. Then we divide the result by the tabulated average speed to get the ratio of escape speed to orbital

speed. The results are in the following table. All speeds are in km s™*.

Planet: | Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto
Ueseape 67.5 49.7 42.1 34.2 18.5 13.7 9.63 7.69 6.72
Ratio: 1.41 1.41 1.41 1.42 1.41 1.42 1.42 1.42 1.42

The last row of the table shows that the escape speeds are all close to the orbital speeds times v/2, as would
be expected for perfectly circular orbits. The small differences are due to the small eccentricities of the true
orbits.

Exercise 6.2.1: Solving the quadratic equation [page 58]

The general solution of the quadratic equation ax® + bz 4+ ¢ = 0 for z is
r=——+— (- 4(10)1/2 , (6.17)

where the + sign indicates that there are two solutions, found by taking either sign in the expression. Apply
this formula to solve the quadratic equation above for R,. Show that the two roots are R, and the root given
by Equation 6.14 on page 58.

Solution 6.2.1

Comparing the form az® + bz + ¢ = 0 with the equation

2L .
(R—ll - 1) R? — 2L Ry + R =0,
we make the identifications z = R,, a = (2L,/R,) — 1, b = —2L,, and ¢ = R,*. The crucial expression b* — 4ac
then becomes 4L,* — 8L, R, + 4R,?, which is the exact square of 2L, — 2R,. Therefore, we can do the square
root explicitly to get from Equation 6.17 on page 58 (after cancelling a common factor of 2)

Ry :%[Lli(Ll ~ R
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Taking 1/a = R,/(2L, — R,), we get for the plus sign R, = R, (the “trivial” root, which of course must come
out as a solution), and for the minus sign R, = R,*/(2L, — R,), as given in Equation 6.14 on page 58.

Exercise 6.2.2: Getting from the Earth to other planets [page 58]

Use Equation 6.16 on page 58 to calculate the speed needed to go from the Earth’s orbit to the orbits of Mars,
Jupiter, and Saturn. The derivation of this formula actually did not need to assume that r» > 1, so use it for
Venus, too.

Solution 6.2.2
The values of r needed for the different planets are just their distances from the Sun in AU, column 2 of

Table 4.2 on page 28. The results are: Mars, 32.7km s™*; Jupiter, 38.6 km s™'; Saturn, 40.1kms~*; Venus,
27.3kms .
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Solutions to selected exercises

Chapter 7

Exercise 7.1.1: How fast does a helium balloon rise? [page 73]

3

The density of the helium in a balloon filled at, say, a fairground is 0.18 kgm~*, while the density of the air
around it is 1.3kg m~®. Using Equation 7.1 on page 73, compute the pressure difference across the air that the
balloon will displace, assuming for simplicity that it is a cube of side 20 cm. Then compute from this the net
pressure force on the balloon itself when it is inflated and takes the place of the air. Next, compute the weight
of the balloon (neglecting the rubber of the balloon itself) and calculate its initial acceleration (upwards).
What multiple of g is this? Will it keep this acceleration as it moves upwards? How many balloons would be
required to lift a 60 kg woman?

Solution 7.1.1

We take the balloon to be cubical to avoid complications arising from averaging the forces around a sphere.
If the balloon will have a height & of 0.2m, then Equation 7.1 on page 73 gives (with ¢ = 9.8 ms~? and the
density of air p = 1.3kgm=3) Ap = 2.5 N m~2. This is the pressure difference that supports the cube of air
that occupies the volume that the balloon will fill when inflated. When the balloon inflates, it displaces the
air, but it feels the same pressure difference, since this comes from the air around the balloon, which hardly
notices the replacement.

The cube has a surface area of 0.04m” top and bottom, so the net pressure force across the balloon (as
across the original cube of air) is 0.10 N. This is what we call the buoyancy force on the balloon. It is upwardly
directed, because the pressure at the top is less than the pressure at the bottom.

The weight of the balloon is F,..,, as calculated in Investigation 7.1 on page 73: the density of helium
times the volume of the balloon, 0.008 m?, times g, which works out to 0.014N. This is a force pulling down
on the balloon, so it subtracts from the buoyancy force of the air to give a net upward force of about 0.09 N.

The acceleration of the balloon upwards is this force divided by the balloon’s mass, which is its density
times its volume. The result is @ = 60ms~>. Dividing by g, we find that this is about 6g. This is the initial
acceleration of the balloon, but the acceleration is soon reduced by friction with the air it moves through.

To lift the woman requires an upward force larger than her weight, mg = 60kg x 9.8ms™2 = 588 N. If
each balloon can exert an upward force of 0.09 N, then we need 588/0.09 &~ 6500 balloons! So helium-balloon
sellers at fairs are safely anchored to the ground by their own weight, and cartoons that show small children
lofted into the air by such balloons are, of course, just cartoons.

Readers who are comfortable with algebra can save themselves a large amount of arithmetic — and learn
more about the problem — by using symbols for the various quantities until the very end. The pressure
difference is Ap = —gp.;.h, the net pressure force is F,,...... = gp...h* (positive because upwards), and the
gravitational force is F, ..y, = —gPnainmh®. The net force on the balloon is F,., = g(pui. — Puetium)h®, so the
acceleration is a = Fi.,/(PretiumP®) = 9(Pair/ Pretiom — 1). The multiple of g is therefore p.;./pueium — 1. This
evaluates to 6g as above.
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Even more important than the saving in calculation is the fact that we learn other things from the algebraic
approach to this problem. In particular, we see that the result we are looking for does not depend on the
size of the balloon h: all the arithmetic using h above eventually cancelled out in the end. This also suggests
that the result would not depend on the shape of the balloon, so our assumption of a cubical balloon is not so
unrealistic after all!

Exercise 7.2.1: How many atoms in a balloon? [page 78]

Consider the cubical helium-filled balloon of Exercise 7.1.1 on page 73. If the pressure inside the balloon is
atmospheric pressure, p = 10° N m~2, and the temperature is 7' = 300K (about 81F), then use Equation 7.6
on page 78 to calculate the number N of helium atoms in the balloon. The size of this answer justifies the
approximation that we can average over large numbers of randomly moving atoms.

Solution 7.2.1

The ideal gas law Equation 7.6 on page 78 can be solved for N to give N = pV/(kT'). Using the given values
for all these numbers (the volume comes from the fact that the balloon is a cube of side 0.2m’, we find that
N =2 x 10* atoms.

Exercise 7.2.2: What is the mass of a helium atom? [page 78]

Use the answer to the previous exercise and the density of helium given in Exercise 7.1.1 on page 73 to calculate
the mass of each helium atom. Use the density given for air to calculate the average mass of an air molecule.
(Since air is a mixture of gases, we only obtain the average mass this way.)

Solution 7.2.2

The density is the mass per unit volume. By dividing our previous result by the volume of the cube, we get the
number of atoms per unit volume, often called the number density. This is 2.5 x 10** m~*. (The units mean
“atoms per cubic meter”. There is no explicit indication of “atoms” in the units because the number of atoms
is a pure number, without dimensions.) The mass of each atom is the mass density divided by the number
density, or 7 x 107*>" kg. For air, the number density is the same, since the ideal gas law does not require us to
specify what the gas is made of. So if we use the given mass density for air we find that the average molecular
mass is 5 x 107> kg. We see from this that the mean mass of an air molecule is 7 times larger than that of a
helium atom, which is another way to understand why helium rises.
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Chapter 8

Exercise 8.1.1: Frequency of light [page 87]

Find the frequency (in Hz) of light whose wavelength is 0.5 ym.

Solution 8.1.1

Using Equation 8.3 on page 87, we get f = (2.998 x 10°ms~)/(5 x 10="m) ~ 6 x 10"

unittime—1, or 6 x 10** Hz. Visible light oscillates more than 10** times per second. (Compare this to audible
sound frequencies, where the air pressure oscillates no faster than about 2 x 10* times per second.)

Exercise 8.1.2: Photons from a light-bulb [page 87]

Show that a 100 W light bulb (which emits 100 J of energy each second) must be giving off something like 10**
photons per second.

Solution 8.1.2

If each photon carries, by Equation 8.5 on page 87, an energy of about 107'°J, then to emit 100J requires
10** photons. Not all of these necessarily come out visible light (whose energy would be somewhat larger than
107*°J): tungsten filament lightbulbs produce only a few percent of their energy output in the visible region
of the spectrum. The rest comes out as “heat radiation”, which is infrared and has wavelengths longer than
1 pm.

Exercise 8.1.3: Sunburn [page 87]

The DNA molecules that carry genetic information in the nuclei of living cells are very sensitive to light with a
wavelength of 0.26 pm, which breaks up DNA molecules. Deduce from this the binding energy of the chemical
bonds within DNA. Ultraviolet light of wavelength 0.28 yum is the most effective for inducing sunburn. What
is the threshold energy required to stimulate the chemical reactions that lead to sunburn?

Solution 8.1.3
Using 0.26 pm for A in Equation 8.5 on page 87, we obtain an energy E = 7.7 x 107*°J for the bonds within
DNA. For light of wavelength 0.28 yum, we have E = 7.1 x 10-*?J. This must be close to the threshold for

stimulating damaging sunburn reactions, since light of longer wavelengths and hence lower energies does not
do so.

Exercise 8.1.4: Gamma-rays [page 87]

When some elementary particles decay, they give off so-called gamma-rays, which are really high-energy
photons. A typical energy released in this way is 10='* J. What is the wavelength of such a gamma-ray? What
is its frequency?
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Solution 8.1.4
Using Equation 8.5 on page 87, setting £ = 1072 ], and solving for A gives A = 2x10=°m x (10-*°J/10-**J) =
2 x 107" m.

Exercise 8.2.1: Temperature of the Sun [page 89]

If one analyzes the colors of the Sun, one finds that the greatest amount of light is emitted in the blue—
green region of the spectrum, around 0.5 pm. Show that this gives an estimate of the Sun’s temperature of
T =19000K. This is closer to the real temperature (5600 K) than our estimate in the text, but we will get
a much better estimate by refining this technique in the next chapter. (The eye sees the Sun as yellow, not
blue—green, partly because it has greater sensitivity to yellow light and partly because blue light is scattered
by the atmosphere.)

Solution 8.2.1

By using Equation 8.8 on page 89 with A = 0.5 um, and then solving for T, we get 7' = 0.6 x 9600 K ~ 5800 K.
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Solutions to selected exercises

Chapter 9

Exercise 9.2.1: Magnitude of the Sun [page 108]

Use the solar constant, given just before Equation 9.1 on page 106, to compute the apparent magnitude m of
the Sun, using Equation 9.2 on page 108. Use Equation 9.4 on page 108 to calculate the absolute magnitude
M of the Sun.

Solution 9.2.1

The solar constant (flux of energy from the Sun at the Earth’s position) is 1355 W m 2. The apparent magni-
tude then comes out at my = —26.9. The absolute magnitude of the Sun depends on its luminosity, given by
Equation 9.1 on page 106. Using this in Equation 9.4 on page 108 gives M, = 4.83.

Exercise 9.2.2: Stellar magnitudes [page 108]

A particular star is known to be ten times further away than aCen and five times more luminous. Compute
its apparent and absolute magnitudes.

Solution 9.2.2

The flux of light from the star is directly proportional to its luminosity, but inversely proportional to the
square of its distance. The flux from the given star is therefore 5/100 = 0.05 times that of aCen. The apparent
magnitude depends on —2.5 times the logarithm of the ratios of fluxes, so that the apparent magnitude of the
given star equals that of aCen plus —2.510g(0.05) = 3.25. Since the apparent magnitude of aCen is 0.08, as
given in the text, the apparent magnitude of the given star is 3.33. Its absolute magnitude depends only on its
luminosity, not its distance from us. Since it is five times more luminous than aCen, its absolute magnitude is
that of aCen plus —2.51og(5) = —1.7. The absolute magnitude of aCen is 4.3, so that of the given star is 2.6.
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Solutions to selected exercises

Chapter 11

Exercise 11.1.1: Chemical bangs [page 123]

Can it really be true that chemical reactions all give off the same energy per atom, to within a factor of, say,
10 or 1007 Don’t the chemical reactions that make a TNT bomb explode give off far more energy than the
chemical reactions that heat up a smoldering rubbish dump? Explain why the answer to this question is no.

Solution 11.1.1

Chemical reactions differ tremendously in their rate, that is the number of reactions that take place in a given
time. The trick of making an explosive is to make sure that all the atoms participate in the reactions, and
that the reactions happen fast, so that all the energy is released in a very short time. The total released, per
atom taking part in the reactions, is not very different from one substance to another.

Exercise 11.1.2: Turning on the lights [page 123]

Once a cloud of gas begins to contract to form a star, roughly how long does it take before nuclear reactions
begin to power the star? Will the star shine before this?

Solution 11.1.2

The cloud of gas starts out very diffuse, so it must contract by a large factor to form a star. This contraction
releases the sort of gravitational energy we have just discussed, and so the star can indeed shine. But we
have seen that gravitational energy can last only a few million years, so that is the time after which nuclear
reactions must take over.

Exercise 11.2.1: Water power [page 124]

If all the hydrogen in a teaspoonful of water were converted into helium, how long would that water power a
100 W light bulb? Take a teaspoon to contain 5g of water.

Solution 11.2.1

Water molecules consist of one oxygen atom, containing 32 protons and neutrons, and two hydrogen atoms,
with one proton each. So hydrogen makes up about 5.9% of the weight of the water. (Electrons have negligible
mass for this problem.) There is thus 0.29g of hydrogen in the teaspoon. Since a proton has a mass of
1.67 x 10~>* g, there are 1.8 x 10** hydrogen protons in the spoon. When four of them combine to form helium,
they release 5 x 107%° kg converted into energy. Therefore the whole spoon will yield 2 x 10~°kg converted
into energy. Multiplying by ¢* to find the equivalent energy gives 2 x 10** J. The 100 W light bulb uses 100J
per second, so the spoonful will power the bulb for 2 x 10°s, or about 65 years.
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Exercise 11.5.1: Entropy of the Sun [page 133]

We have seen in Chapter 8 that a typical photon in the Sun takes 10°y to randomly “walk” out of the Sun.
That means that the Sun contains all the photon energy it generated by nuclear reactions in the last million
years. This must all be in the form of photons, since the particles in the Sun have the same total energy today
as they had a million years ago. (a) Calculate from the solar luminosity how much energy the Sun contains
in photons. (b) If the average temperature inside the Sun is 10° K, calculate mean energy of each photon.
(c) From these two results estimate the number of photons inside the Sun. (d) From the mass of the Sun,
assuming for simplicity that it is composed entirely of hydrogen, calculate the number of protons (hydrogen
nuclei) in the Sun. (e) Find the ratio of the number of photons to the number of protons in the Sun. This is
a measure of what physicists call the entropy of the Sun.

Solution 11.5.1

(a) For a luminosity of 3.83 x 10?° W, the total energy emitted during the last million years (3 x 10*%s) is
1.2 x 10* J. This is rougly the amount of energy that is currently contained in the photon gas inside the Sun.

(b) The typical photon energy is the same as that of the particles with which the photons are constantly
colliding, namely E = 3£kT. For a temperature of 10° K, the energy is 2 x 10~'*J.

(c) This means that the number of photons is (1.2 x 10**J)/(2 x 10~**J = 6 x 10°".

(d) We want to compare this with the number of protons in the Sun, assuming that all the mass of the
Sun (2 x 10*°kg) is in protons, each of which has a mass 1.67 x 10~*"kg. (This is a good assumption, since
most of the mass of the Sun is pure hydrogen, and the mass in electrons is negligible.) Dividing one by the
other gives 1.2 x 10°7 protons.

(e) There are thus five times as many photons inside the Sun as protons.



23

Gravity from the ground up

Solutions to selected exercises

Chapter 12

Exercise 12.1.1: The conditions for star formation [page 137]

A typical molecular cloud has a temperature 7" = 20K, a composition mainly of molecules of H, (molecular
hydrogen), and a density that corresponds to having only 10° molecules of H, per cubic meter. Calculate the
Jeans length and Jeans mass of this cloud. Compare the mass you get with the mass of the Sun.

Solution 12.1.1

For the given data, the Jeans length is A\; = 3.4 x 10"® m. In astronomers’ distance units, this is 1.1 pc, fairly
typical of the distances between stars. The Jeans mass, which is the mass within a sphere of this size in the
molecular cloud, is 5.5 x 10** kg, or 280 solar masses. This means that the region of a cloud that will contract
to begin forming stars will typically start to form hundreds of stars.

Exercise 12.2.1: Inverting a logarithmic equation [page 141]

Go through the steps leading from Equation 12.5 to Equation 12.6 on page 141. First put the definition of
B into Equation 12.5. Then write mlog M as log(M™). Finally combine this term with the § term on the
right-hand side of Equation 12.5 on page 141 to get the logarithm of Equation 12.6 on page 141. Justify each
step you make in terms of the rules given above for the use of logarithms.

Solution 12.2.1
We use the definition b = log  to write Equation 12.5 on page 141 as

log L = mlog M + log 3.
Then we use the identity alogz = log(z*) to write this as
log L = log(M™) + log 3.
Next we use the identity logz + logy = log(zy) to write this as
log L = log(BM™).
Finally we raise both sides to the power 10, using 10'°¢* = x, to get
L=pgM™.

since in the discussion we decided that the slope m was about 3.5, this is the same as Equation 12.6 on
page 141.
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Exercise 12.2.2: Dependence of stellar lifetime and luminosity on mass [page 141]

In the same way as we estimated the exponent in the relationship between luminosity and mass, estimate the
exponent in the relationship between lifetime and mass. Do you get —2.5, as given above? The curves for
luminosity and lifetime are not perfect straight lines, so representing them by a single constant exponent is an
approximation. Estimate the error in this approximation by giving a range of values for both exponents that
would acceptably represent the graphs.

Solution 12.2.2

When the mass of the star is 1 solar mass, the lifetime is about 2 x 10* million years. When the mass of the
star increases to 30 solar masses, the lifetime decreases to about 5 million years. In terms of logarithms, the
logarithm of the lifetime has decreased by 3.6 while the logarithm of the mass has increased by about 1.5. The
slope is the ratio of these numbers, about —2.4. (The minus sign occurs because the lifetime has decreased,
not increased.) This is close to the value of —2.5 that is usually taken as the rule of thumb. If we look at
the graph in Figure 12.3 on page 139, we see that the slope is a bit steeper than our average value over the
lower range of masses, only getting shallow at the higher end. Slopes between —3 and —2 would probably fit
different parts of the curve.

Exercise 12.2.3: Energy radiated per kilogram: is it a constant? [page 141]

Test the assertion that the energy radiated per kilogram is constant, independent of the mass, by estimating
the exponent from the graph in the same way as the lifetime and luminosity exponents were estimated. Is the
exponent really zero? If not, can you explain this in terms of the uncertainty in the other two exponents that
you arrived at in the previous exercise? In other words, is the exponent you get for the radiated energy within
the range of exponents you would get if you selected various values for the other exponents and put them into
the relation in Equation 12.7 on page 1417

Solution 12.2.3

At one solar mass the energy consumption is about 2 million joules per kilogram, rising to about 5 at 30
solar masses. The logarithmic slope is about 0.3. This is fairly close to zero, and would be well within the
uncertainties of 0.5 in the slopes of the other curves.

Exercise 12.3.1: Boson stars [page 143]

(a) In Equation 12.11 on page 143, replace the proton and electron masses by a single boson mass my, and
assume that g = 1. This gives the formula for a star composed of just one type a particle, the boson of mass
myp. For such a star of total mass M, calculate the following ratio

2GM /Rc* = 8M*mi /m,,

where mpj is the Planck mass defined in Equation 12.20 on page 146.

(b) The ratio above is the ratio of the size of a black hole, 2GM/c*, as given in Equation 4.12 on page 36,
to the size of the star. We will see in Chapter 21 that the star cannot be smaller than a black hole, so this
ratio must be less than one. Show that this sets a maximum mass on a boson star made from bosons of mass
mp:

Max = 8*1/2m%1/mb.

(c) Find the largest mass my, that the boson could have in order to allow boson stars of a solar mass to exist.
Find the ratio of this mass to the mass of a proton. You should find that the boson needs to have very much
less mass than a proton.

Solution 12.3.1

(a) With the given assumptions, the boson star has a radius R = h*/4Gm,*M. To see how relativistic it
is, we form the ratio 2GM/Rc¢* = 8(Gm,M/hc)*. If we now use Equation 12.20 on page 146 to replace the
combination G/hc by 1/my,, we get the desired expression, 8m,,2M?/mp,*.

(b) Since 8m,,2M?*/myp* cannot exceed 1, it follows that M cannot exceed 8 /2

Mp, /M.
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(c) For boson stars of a solar mass to exist, the maximum mass given above must be at least M. This
means that m, must be smaller than my*/Mg. Using the value of 5.5 x 10~ kg given for the Planck mass
in Equation 12.20 on page 146, we find that the boson mass must be less than 1.5 x 107*° kg. This is only
roughly a fraction 1072° of the proton mass!

Such a small-mass particle could easily have avoided discovery in particle-physics experiments so far, if it
does not interact with ordinary matter.

Exercise 12.4.1: Momentum in the Fermi sea [page 144]

Here is where the factor of N!/® comes from. First we consider the easier case of electrons confined in a
one-dimensional “box”, say along a string of finite length. We return to the three-dimensional star later. If
each pair of electrons has a distinct momentum, separated by Amev from its neighbors, then we could mark
out a line on a piece of paper, start with the smallest momentum allowed (Amev), and make a mark each
step of Amev. Each mark represents the momentum of one pair of electrons. If we have N, electrons, then
there will be a total of N./2 marks. We would have to make marks in the negative direction too (electrons
moving to the left), so the largest momentum will be (Ne/4)Amev. Now suppose the electrons are confined
to a two-dimensional square sheet of paper. Show that, leaving out factors of order unity, their maximum
momentum is NY2Amev. (Hint: each pair of electrons occupies a square of momentum uncertainty.) Similarly,
show for three dimensions that the result is N3 Am,v.

Solution 12.4.1

Suppose that, in the two-dimensional case, the maximum momentum in either direction is called p,. Consider
a plane with coordinates equal to the momentum in the z-direction and the momentum in the y-direction. In
this plane, draw a circle of radius p,. All particles must have momentum vectors within this circle. Since only
at most two particles can have the same momentum to within an uncertainty Ap, we can divide the circle up
into squares of size Ap. Since each square has area (Ap)?, there are m(p,/Ap)® such squares (neglecting the
problem that squares out at the boundary of the circle don’t pack properly, which is a small effect if the number
of squares is large). Since there are two particles per square, the total number of particles is N = 27 (p,/Ap)*.
Solving this for p, gives p, = Ap(N/2x7)*/2. This verifies the desired result, since we are neglecting factors of
order unity (in this case, the factor of 27).

For the three-dimensional case, the maximum momentum p; gives the size of a sphere in three momentum
dimensions. The calculation goes through in a similar way.

Exercise 12.5.2: Relativistic degenerate gas equation of state [page 146]
Find the constant 8 in Equation 12.19 on page 146.
Solution 12.5.2

Equation 12.16 on page 146 needs to be modified to involve the mass density p. The mass density is dominated
by the protons and neutrons, and there are p of them per electron. Therefore the density is p = pm,N./V.
Solving this for N,, we get N, = Vp/um,. Putting this into Equation 12.16 on page 146, we get

. Mpw
4/3
3RM4/3mp/

This is of the form of Equation 12.19 on page 146. To get the coefficient 3, we need to simplify the expression.
Replacing V' by 47 R*/3, we find that the size R of the star drops out and we just get

41/37T1/3hc

34/3u4/3mé/3'
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Chapter 13

Exercise 13.4.1: Accretion disk temperatures [page 161]

Perform the arithmetic to get the temperature 7' = 8 x 10* K in Equation 13.11 on page 161. Then use this
equation to calculate the other values of temperature given in the text.

Solution 13.4.1

The starting point is Equation 13.10 on page 161, T' = (GM M, /w0 R*)*/*. The given values, converted to SI
units, are
M =1Mg =2 x 10*%kg,

My =10""M,y ' =2x10°kgy ' =6.3 x 10"%kgs™,

and R = 5 x 10°m. The fundamental constants are G = 6.67 x 101! and o = 5.67 x 10~® in ST units. Putting
all these into the formula for temperature gives 7' = 7.8 x 10* K.

To get the temperature of a disk around a neutron star, we just need to change the radius from 5 x 10°m to
10*m. The ratio of these radii is 500, and the temperature depends on the radius to the power %4. This leads
to an increase of temperature by a factor of 500%/* = 106. The temperature of this disk is then 8.2 x 10° K.

Exercise 13.4.2: Accretion disk luminosities [page 161]

Take the equation L = GM M;/R for the disk luminosity and write it in a similar normalized form to Equa-
tion 13.11 on page 161, scaling the mass of the central object to 10°Mg), the accretion rate My to 1My,
and the radius to 10" m. These values are appropriate to accretion disks around the giant black holes that
power quasars (Chapter 14).

Solution 13.4.2
Here we want to evaluate the luminosity for

M =10° Mg = 2 x 10*? kg,

My =1Moy ' =2x10"kgy* =6.3 x 10* kgs*,

and R = 10"* m. Putting this into the luminosity formula, we get L = 8 x 10*®* W. This is over 2 x 10" times
the luminosity of the Sun, which means it is comparable to the luminosity of an entire large galaxy!
Expressed as a scaling formula, we find

-1
L=sx10® (M M i
109Mg ) \1Mgy~*) \108m )
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Solutions to selected exercises

Chapter 14

Exercise 14.1.1: Binding energy of a cluster [page 165]

Show that FE,.; can be expressed as

o, (14.5)

In this form it is usually called the binding energy of the cluster. This is only an approximation, of course,
accurate to a factor of two or so.

Solution 14.1.1

To boil off the cluster one must give all the stars a velocity equal t0 ¥e.eap.. This means adding a kinetic energy
of VoM 02, cape- USING Vereape = (2GM o/ R,)'?, we get the required result:

1. 2GMg GM?
E 1= = (\/f = —C‘
boll = o T e Ry
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Solutions to selected exercises

Chapter 15

Exercise 15.1.1: More photon velocities [page 183]

Let v = —c in Equation 15.3 on page 183, corresponding to a photon moving backwards relative to the one we
tested above. Show that again V' = —¢: the speed of the photon does not depend on the observer.

Solution 15.1.1

The numerator in Equation 15.3 on page 183 becomes u —c¢ and the denominator becomes 1—u/c = —(u—c)/c.
The fraction therefore evaluates to —c¢, which is the same speed as the input speed of the photon. Thus, this
composition law respects the speed of light in both directions.

Exercise 15.1.2: Computing the graph [page 183]

In Figure 15.2 on page 184 we plot the composition law Equation 15.3 on page 183 for the special case u = 0.4c.
Compute V/c for the set of values v = {0.1¢, 0.4¢, 0.9¢}. Compare them with the points plotted on the curve
in the right-hand panel of the figure.

Solution 15.1.2

The values given by Equation 15.3 on page 183 for u = 0.4¢ and the given values of v are
v=0.1c V =(0.4¢+0.1¢)/(1 + 0.4 - 0.1) = 0.48¢;

v =0.4c V =(0.4c+0.4¢)/(14+0.4-0.4) = 0.69¢;
v =0.9c V =(0.4¢+0.9¢)/(1 4+ 0.4-0.9) = 0.96¢;
These lie on the solid curve in the right-hand panel of Figure 15.2 on page 184.

Exercise 15.1.3: How fast is relativistic? [page 183]

If both u and v are 0.1¢, what is the fractional error in using the Galilean addition law? [The fractional error is
the difference between the Einstein and Galilean results (the error), divided by the Einstein result (the correct
answer).] If w = v = 0.3, what is the fractional error? Suppose V' can be measured to an accuracy of +5%.
What is the largest speed (again assuming u = v) for which one can use the Galilean formula and make errors
too small to be measured?

Solution 15.1.3

The relativistic law for speeds of 0.1c and 0.1c gives a result

V = (0.1¢+ 0.1¢)/(1 +0.1- 0.1) = 0.198c.
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If we were to use the Galilean law, we would get exactly 0.2¢. The difference between the results is 0.002c¢,
which gives a fractional error of 0.002¢/0.198¢ = 0.01. That is, the Galilean law is in error by 1% in this case.
Doing the same for two speeds of 0.3c gives a larger fractional error. First, the Einstein composition law
gives
V =(0.3¢+0.3¢)/(1 4+ 0.3-0.3) = 0.55¢.

The Galilean law would give simply 0.6¢, leading to an error of 0.05¢. As fraction of the correct answer, this
error is 0.05¢/0.55¢ = 0.09, or 9%.

If our measurement accuracy for speeds is £5%, we won’t notice the error if the speeds are somewhere
between our two examples. Trial and error leads to u = v = 0.22¢, for which the Einstein law gives V' = 0.42¢
while the Galilean gives 0.44c¢. The error is 0.02¢ and the relative error is 0.05 or 5%. So if one is composing
identical speeds smaller than 0.22¢, one can use the Galilean law to an accuracy of better than 5%.

Exercise 15.1.4: Zero is still zero [page 183]

The Einstein composition law still has some features that we expect from everyday life (and logical consistency).
Show that, if the projectile remains at rest with respect to the moving experimenter (so v = 0), then its speed
relative to the experimenter at rest is the same as the speed of the moving experimenter, V' = u. Show further
that if the moving experimenter shoots the projectile backwards with a speed of v = —wu, then it will be at
rest with respect to the resting experimenter (V = 0).

Solution 15.1.4

If v =0, then V = (u+0)/(1 +0) = u. This is required by logical consistency, since all objects that are at
rest with respect to one another must be measured by any other experimenter to have the same speed as one
another.

Similarly, if v = —u then V = (v —u)/(1 —u*/¢*) = 0. This is again required by logical consistency. If
the projectile with speed v is thrown backwards relative to the moving object with the speed —u, then it will
have the same speed relative to the moving object as the experimenter who is at rest, and therefore it must
be at rest relative to this experimenter as well. The result of O verifies that the Einstein law respects this.

Exercise 15.3.1: Slow-velocity expansion [page 192]
Use the binomial expansion Equation 5.1 on page 43 to show that the expansion of (1 —v?/¢*)*/? for small v/c

is 12
v\? 1 /v\2
SCIRETC
{ c ] 2 \c *
Solution 15.3.1

The binomial theorem as given in Equation 5.1 on page 43 is
1 .
(a+b)" =a" +na" b+ En(n —1Da" 2% 4.

We want to expand (1 —v?/c*)'/2, so we take a = 1, b = —v*/¢?, and n = *4. Then the formula above becomes

(using only the first two terms)
vy2]? 1 v?
] e (-
@] s (E)
This simplifies to the required expression
271/2 1 2
OISR
c 2 \¢

Notice that the - - - represents terms that are smaller that the terms written out explicitly in this expression,
provided that |v/¢| < 1, which is always the case. The reason they are smaller is that they involve higher
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powers of v/c, and each time v/c is multiplied by itself the result gets smaller. So the term we have kept is
the largest part of the correction introduced by relativity.

Exercise 15.3.2: How much mass is in kinetic energy? [page 192]

Consider the example given in the text, of an automobile with a rest-mass of 1000kg. Show that its kinetic
energy at a speed of 100 km hr~* has a mass equivalent of 4 ng (4 nanograms, or 4 x 10~**kg).

Solution 15.3.2

Since the speed is very small compared to ¢, we just use the non-relativistic expression for the kinetic energy

Vemv® = 3.9 x 10°J. (Remember to convert the speed of 100kmhr™" to its sI value 28 ms~".) To find the
mass equivalent, divide this energy by c*, which gives 4.3 x 10~ kg, or 4.3 x 107° g, or 4.3 nanograms.






35

Gravity from the ground up

Solutions to selected exercises

Chapter 18

Exercise 18.1.1: Redshift near the Sun [page 231]

Derive Equation 18.8 on page 231, starting from Investigation 2.2 on page 16. Calculate the redshift experienced
by a photon with a wavelength of 0.5 um as it travels from the surface of the Sun to a very distant observer.
Calculate the redshift of the same photon if it is observed by a space observatory in the Earth’s orbit but far
from the Earth. Finally, calculate the redshift if the same photon is observed by an astronomer on the surface
of the Earth.

Solution 18.1.1

The first part of this exercise, proving the redshift formula, is difficult. The remaining parts are simply putting
numbers into the formula.

The thing that makes the derivation of the redshift in Investigation 2.2 on page 16 relatively simple is the
fact that the distance h is small compared to the radius of the Earth, so that the acceleration of gravity g can
be taken to be constant during the time that the experiment is performed. If we now want to do a redshift
experiment between an experimenter at a distance r from a body of mass M and another experimenter very
far away, we cannot simply use the formula gh/c*: g does not have a single value over this distance and h, the
separation of the two experimenters, is very large.

Instead, we have to do the calculation in short steps, small enough to approximate g as constant over the
small distance. Thus, let us imaging a series of radii extending outward from r in steps of size Ar: r, = r,
rn=r+Ar, r, =1+ 2Ar, r; = r + 3Ar, and so on out to whereever the distant experimenter is located.
In each of these small steps, the redshift depends on the local value of g, which is of course g, = GM/r,* at
the location r,. The redshift factor in step at r, will be g,Ar/c* = (GM /r,c*)(Ar/r,). I have grouped these
factors in this way to show that the redshift at any step is small: while the factor GM/r,c* can be of order
unity in a very relativistic situation, it is small for Newtonian gravity; and the factor Ar/r, is as small as we
wish to make it, since we can control how large Ar is.

Now, the total redshift will be the product of all the redshift factors

(14 goAr/c?) - (14 g1Ar/c?) - (1 4 goAr/c?) -+ -.

This is not as complicated as it looks. When two factors are multiplied together, one of terms in the result is
so small that it can be neglected. Thus, let us do the product

(14 goAr/c?) - (1 + g1Ar/c?) = 1+ goAr/c + g1 Ar/c? + goAr/c® - g1 Ar /.

The final term can be neglected, since it depnds on (Ar/r)?, which will be very small. Thus, we will take as
a good approximation the simpler formula

1+ goAr/02 + glAr/c2 + ggAr/c2 + -
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Using our earlier expression for the individual redshift factors, we get

GMAr (1 1 1
1+ > —2+—2+—2+"' .
& To 1 5

The problem is to show that this gives the total redshift shown in Equation 18.8 on page 231. Those readers
who understand the integral calculus can show this directly. We will choose a different route, namely to show
that if we start with Equation 18.8 on page 231 and take small steps of size Ar, then the differences in redshift
from one step to another are the same as given above. To be concrete, let us ask what is the difference in the
redshift between a location r, and r,,,. This is

L GM N\ (| GMY_GM( 1 1
Tpt1C? rne2 ) 2 T+ Ar Ty,

GM
:c—Z
_ GM

2

[—(rn +Ar)~ 1]
(=rp b+ 2Ar 4 )

where in the last line we have applied the binomial theorem, Equation 5.1 on page 43, and kept only the first
two terms since the successive terms are smaller and smaller (containing higher powers of Ar/r). Simplifying
gives

GM Ar

2 ri’

This is identical to the contribution of r, to the full redshift factor, as calculated at the end of the previous
paragraph. This shows that the expression given in Equation 18.8 on page 231 is the correct expression for
large changes in r.

To do the rest of the problem, note that the change in wavelength is found by multiplying the factor
GM /re* by the original wavelength. For the Sun’s mass and radius this factor is 2.12 x 10=°. If the original
wavelength was 0.5 um = 5 x 107" m, then the change in its wavelength was a mere 1.061 x 10~**m, or 1 pm.
The sense of the change in wavelength is that it got longer.

If the observer is not very far from the Sun, but only in the orbit of the Earth, then the redshift is given
by the difference of the redshift factors at the two radii. The Earth’s orbit is at 1 AU = 1.5 x 10" m, so the
redshift factor there is GMg /(1 AU ¢* = 107, The difference from the redshift factor at the Sun’s surface is
2.11 x 107°, leading to a redshift of 1.055 x 10~**m. So an observer at the Earth’s orbit would have to be
able to measure the redshift to better than 1% accuracy to tell the difference from the redshift seen by a much
more distant observer: the Earth is already “far away”.

If the observer is sitting on the surface of the Earth, then the redshift is composed of two factors: the
redshift experienced by the photon reaching the Earth’s orbit, calculated in the last paragraph, and then the
blueshift experienced by the photon as it falls onto the surface of the Earth. This is a blueshift because the
photon is moving more deeply into the Earth’s gravitational field, rather than moving away. To calculate this
blueshift factor, we need to evaluate GM /rc® using the Earth’s mass and radius; this gives 7 x 10710, Because
this is a blueshift, the wavelength of the photon shortens by 3.5 x 107 m, or 0.35fm. The net redshift is
therefore 1.0547 x 10" m.
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Chapter 19

Exercise 19.2.1: Upper bound on the cosmological constant [page 257]

The fact that Newtonian gravity describes the orbits of planets in the Solar System very well, using only one
parameter (the mass of the Sun) for all planetary orbits, suggests that the cosmological constant must create
a smaller mass density than the mean mass of the Solar System out to Pluto’s orbit. (a) Calculate this mean
density by dividing the mass of the Sun by the volume of a sphere whose radius is the radius of Pluto’s orbit.
(b) From this, calculate the value of the cosmological constant A that would give a mass density pp of the
same value. Use Equation 19.7 on page 255.

Solution 19.2.1

(a) The mean density of the Sun out to Pluto’s orbit is the mass of the Sun, Mg, divided by the volume of a
sphere whose radius is Pluto’s orbital radius, 6 x 10" m. This works out to be 2.2 x 1072 kg m~32.

(b) The value of the cosmological constant that would have this mass density can be obtained from the
density by multiplying by 877G, as one can deduce from Equation 19.7 on page 255. This gives 4 x 107**s72.
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Chapter 20

Exercise 20.1.1: How big is the nuclear hard core? [page 265]

Use the mass 1.67 x 10727 kg of a nucleon and the density 2 x 10'" kg m~® to calculate the volume occupied by
each nucleon in a nucleus. If the nuclei are contained in cubical boxes, how big is each box? What is the size
of the hard core, the irreducible radius of a nucleon?

Solution 20.1.1

The density of a nucleus is its mass divided by its volume. If we consider a single nucleon, then it must occupy
an average volume whose size is just what is needed to give a density equal to nuclear density. Thus, we find
its mean volume by dividing its mass by the nuclear density: V = m,/puucea = 8 X 107** m®. If this volume
is a cube, then it has a side which is the cube-root of this number, or 2 x 107" m = 2fm. If the nucleon is a
sphere sitting in the middle of this box, then its radius would be half the size of the box, or 1fm.

Exercise 20.1.2: Calculating the minimum neutron star mass [page 265]

Solve Equation 20.1 on page 265 for M and use the value of py,c1 in the previous exercise to verify the minimum
mass in Equation 20.2 on page 265.

Solution 20.1.2
Solving Equation 20.1 on page 265 for M gives

M = 0.17G~3/?? —1/2

escapepnucleus °

—1

If we put the nuclear escape speed Ve.ope = 4 X 107ms~" into this expression and use the nuclear density

Pova = 2 X 10" kg m~?, we get M = 4 x 10%® kg, as required.

Exercise 20.1.3: What does a neutron star look like? [page 265]

Taking the mass of a neutron star to be 1My, what is its radius? What is the escape speed of a projectile
leaving its surface? What is the speed with which a projectile falling from rest far away reaches the surface?
What fraction of the rest -mass of such a projectile is its kinetic energy when it arrives at the surface? What is
the orbital speed of a particle in a circular orbit just above the surface of the star? What is its orbital period?
Do all calculations using Newtonian gravity, even though the speeds are relativistic.

Solution 20.1.3

Given a density equal to the nuclear density p,.. = 2 x 10'"kgm™2, a star with the mass of the Sun would
have a volume equal to 1Mg/p,.a = 10** m®. The radius of a sphere of this volume is R = 13km.

The escape speed of a projectile leaving its surface is v... = (2GMg/R)"? = 1.4 x 10°m s~ = 0.48¢. This
is the same speed that a projectile falling from rest far away would have when it reached the surface.
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The orbital speed near the surface is v, = (GMg/R)"?> = 1.0 x 10°m s=' = ¢/3. The period is the time
it takes to travel the circumference of a circle of radius R at this speed, which is P = 27R/v,,, = 8 x 107*s =
0.8 ms.

Note that we have used Newtonian formulas here, even though the speeds approach the speed of light. The
results can only be approximate; we must expect that fully relativistic calculations will give answers that may
differ by factors of order 2.

Exercise 20.1.4: Thermal effects in neutron stars [page 265]

If the binding energy of a nucleon is 8 MeV, what temperature would the star have to have in order to boil off
a nucleon? Since the pressure support for the star comes from the hard-core repulsion and not from random
thermal motions of the star, it is possible for stars to cool off after formation without changing their properties.
Give an argument that a star is "cold” (thermal effects are unimportant for its structure) if its temperature
is smaller than the one you have just calculated. Assume the star has a temperature of 10°K. What is its
black-body luminosity? (See Equation 10.3 on page 116.) What is the wavelength at which it is brightest?
(See Equation 10.9 on page 117.)

Solution 20.1.4

For a neutron to “boil” off, its thermal kinetic energy ®4kT must equal the binding energy per nucleon of
8MeV = 1.3 x 1072 J. This gives T'=6 x 10"° K.

If the true temperature of the star is smaller than this, then most of its pressure must be coming from
non-thermal effects (the exclusion principle and the nuclear hard-core potential) rather than from thermal
motions. In this sense the star is “cold”.

If the neutron star’s temperature is 10° K, then with the radius R = 1.3 x 10* m calculated in the previous
exercise we find a black-body luminosity of L = 47R*cT* = 1.2 x 10°°W. This is only about one-third
the luminosity of the Sun, despite its much higher temperature. The wavelength at which it is brightest is
2.9 x 107" cm. This is in the high-ultraviolet or low-energy X-ray part of the electromagnetic spectrum.

Exercise 20.2.1: Pulsar energy storehouse [page 275]

A pulsar stores its energy as rotation. Estimate how much energy was released when the neutron star was
formed by calculating the approximate gravitational potential energy of the neutron star, —GM?*/2R. You
should find that the rotational energy is a small fraction of what was available when the star formed. What
happened to the rest of the energy?

Solution 20.2.1

The energy released is GM?*/2R = 10**J. Given the Crab pulsar’s kinetic energy of rotation, 1.5 x 10**J,
we see that only about 0.01% of the available energy went into making the neutron star spin. The remainder
had to be carried away from the star when it was formed. Most of this was probably taken by the emitted
neutrinos, but an unknown fraction was carried away by gravitational radiation.
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Chapter 21

Exercise 21.3.1: Accretion disks [page 300]

(a) If the spectrum of an X-ray source looks like a black-body spectrum that peaks around 1keV, show that
the associated temperature of the body should be near 107 K. (b) If the luminosity of the X-ray source is
10%° W, estimate the surface area and effective radius of the region emitting the X-rays. (c) Find the rate at
which mass accretes onto the compact object, assuming that its mass is 15Mg. Express the result in units of
solar masses per year.

Solution 21.3.1

(a) The temperature T' is given approximately by setting kt equal to the energy of a typical photon. The
photon energy 1keV converts to 1.6 x 10~*¢ J. Dividing by k gives 1.2 x 10" K. This is a little low for ¢YG X-1,
whose spectrum peaks around 2keV, and whose temperature is therefore around 2.4 x 107"K. But cyGg x-1
regularly switches between this low-temperature state and a high-temperature state in which the spectrum
keeps rising toward 100 keV; in this state, however, the spectrum does not seem to be a black-body spectrum,
which means that the accretion disk must be too thin to be a perfect absorber. So these X-ray sources can be
much more complex than our simple model!

(b) Here we use the black-body luminosity formula L = 0 AT*, where A is the area of the black-body. This
will be correct to some approximation. It should be used to get an ”effective” area, an idea of how big the
main emitting region of the disk is. It is not going to give us the total radius of the accretion disk, since the
outer parts are cool and are not emitting X-rays. Using the temperature of 107 K and the given luminosity
allows us to solve for the area, which comes out to be 1.8 x 10° m®. Since this is a disk, this should equal 7.
Solving for r gives r = 24 km.

This is a little smaller than the 30km radius of a black hole of mass 15Mg, which is what cyG X-1 is
thought to be. So our assumption of a filled disk is not a good one. Although the problem did not ask us
to do this, let us instead see what we should expect if the emission comes from a ring (annulus) near the
hole. The inner edge of this ring should be at th e innermost stable circular orbit, which was discussed earlier
in Chapter 21. Inside this orbit, no circular motion is possible, so material falls quickly into the hole. Any
radiating material must accumulate outside this radius. It lies at three times the Schwarzschild radius, or
about 133 km for the given mass. If we denote this radius by r then the area of a narrow ring of width Ar is
2mrAr. Using the earlier value for the area and solving for Ar, we find that the thickness of the annulus is
Ar = 2.1km, less than 2% of the radius. The black-body emission therefore seems to come from a very thin
annulus near the innermost stable circular orbit.

(c) We use Equation 13.8 on page 161 with the given values of M = 15M and L = 10°*°*W. We take
the radius R to be that of the innermost stable circular orbit of a black hole of this mass, for the reason
explained above. This radius is 6GM/c* = 133km. Using these numbers, we find M, = 6.7 x 10**kgs™*' =
1.1 x 107 Mgyt
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Exercise 21.4.1: Hawking radiation [page 305]

Perform the computations indicated in this investigation. Then find out how much time the hole has remaining
when its temperature is high enough to produce electrons in its radiation (this will require k7" to exceed m.c?).

Solution 21.4.1

The computations in this investigation begin with the luminosity formula for black-bodies, and substitute
into that the expression for the area of a black-hole, the temperature of hte black hole (Equation 21.13 on
page 305), and the expression for the Stefan-Boltzmann constant (Equation 10.4 on page 116):

L = oAT*
210kt 167 G2M? he? *
T ek (167r2kGM>
1 Sh

3072072 G2 M2’

The expression in the investigation is obtained from this by grouping factors together in a convenient way.
Now, the remaining lifetime 7 of a hole of mass M can be found approximately by assuming that its
luminosity does not change with time, so that the energy radiated in a given time ¢ is Lt. The hole will
have evaporated when this equals its total mass-energy, Mc®. This is only an approximation, but since the
luminosity increases very rapidly as the mass of the hole decreases, the estimate will not be far off.
The lifetime is therefore found from the equation LT = Mc?. Solving for 7 gives

M

T =

L (GM\? &
_ 2
= 307207 (—c3 > el

The expression contains a dimensionless constant times the cube of the light-crossing time across the black
hole GM/c* divided by the square of the Planck time ¢z, = (hG/c®)*/?, defined in Equation 21.11 on page 295.

This is the remaining lifetime of any black hole. When the black hole is hot enough to emit electrons, its
temperature equals m.c?/k, and its mass is (by Equation 21.13 on page 305)

he

M=—" " =2x10%ke = 107" M.
1672Gm. & ®

Putting this into the expression above for 7 gives

15/ h\°¢
T=——] —.
212 \'mec?2 ) hG

This evaluates to 2.2 x 10**s =7 x 10*"y, or about 5 x 107 times the age of the Universe!
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Chapter 22

Exercise 22.1.1: Dimensional analysis [page 315]

Fill in the missing steps above that show that the dimensions of energy flux are kgs=2. Then show similarly
that the dimensions of ¢®/G times the square of the frequency are the same.

Solution 22.1.1

Flux is energy per unit area per unit time. The dimensions of energy are J = kgm?s™2 (think of kinetic
energy, mass times the square of velocity). Dividing by m? to get energy per unit area gives kgs—*. Dividing
by s to get energy per area per unit time yields, finally, kg s™, as required.

The dimensions of ¢® are m®s~?. The dimensions of G are kg=' m® s, so when we divide by this we get
kgs~'. When multiplied by f?, which has units Hz®> = s™* we get the dimensions of flux as required.

Exercise 22.1.2: Size of gravitational wave flux [page 315]

We saw that a gravitational wave arriving at the Earth might have an amplitude h as large as 3 x 107%'. If its
frequency is 1000 Hz, then calculate the energy flux from such a wave. Compare this with the flux of energy
in the light reaching us from a full Moon, 1.5 x 107* W m~>. Use Equation 9.2 on page 108 to compute the
apparent magnitude of the source. Naturally, the source is not visible in light, so this magnitude does not
mean a telescope could see it, but it gives an idea of how much energy is transported by the wave, compared
to the energy we receive from other astronomical objects.

Solution 22.1.2
Using Equation 22.4 on page 316 with the given values yields:

F=(1/4)(3 x 108 ms~)3(6.67 x 107" m®s>kg=")~*(1000s7*)%(3 x 107*')* = 2.9kgs~°.

This is about 2000 times larger than the flux from the full Moon! Using Equation 9.2 on page 108 with this
flux gives an apparent magnitude of -20. This is brighter than any star.

Exercise 22.3.1: Radiation from erample binaries [page 321]

Do the calculations that lead to the values in Table 22.1 on page 319 for the orbital numbers and chirp times
from the values of M, R, and r given in the table.

Solution 22.3.1

The formulas we need to use are Equation 22.6 on page 320 for the frequency in the fourth column, Equa-
tion 22.12 on page 321 for the fifth column, Equation 22.7 on page 320 for the sixth, and Equation 22.10
on page 320 for the final column. Remember to convert the radii given in kilometers into meters, and the
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distances given in kiloparsecs to meters. The calculation for the first line goes as follows: f = 6.86 x 107°s™';
tew = 7.48 x 10°yr (remember to convert the answer from seconds to years); h = 3.46 x 107%*; and L,, =
1.43 x 10~*L,, (get the luminosity of the Sun L, from the Appendix).

The other lines of the table are similar. In fact, they can be found most easily by scaling; this means, for
example, that the frequency in the second line should be higher by the 34-power of the ratio of the orbital
radii, which is a factor of 2.83 x 10°. Multiplying this by the frequency in the first line, we get 194 s~". This
scaling method avoids having to use the values of ¢ and G each time, recalculating only what is necessary.

Exercise 22.3.2: Chirp times [page 321]

From the chirp time for the system that resembles the Hulse—Taylor pulsar that was calculated in Exercise 22.3.1
on page 321, work out the rate of change of the period: what fraction of a second does the orbital period lose
each second? Compare this with the measured number quoted in the text. Explain the difference. (See the
caption for Table 22.1 on page 319.)

Solution 22.3.2

The rate of change of the period is the period divided by the chirp time (converted back into seconds). From
the table the ratio of these two is 6.21 x 10~**, which is dimensionless (the ratio of two times). In the text we
quote the measured value for the Hulse-Taylor pulsar, 2.44 x 10~'2. This is a factor of 39.3 times large than our
computed value. The main difference here is that we have assumed that the orbit is circular, whereas the real
system has a highly eccentric orbit. Since the luminosity of the system is a strong function of the separation of
the stars, the rate of shrinkage of an eccentric binary is much larger than that of a similar system in a cirular
orbit with the same period.
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Chapter 23

Exercise 23.1.1: Einstein ring [page 337]
Perform the indicated algebra to derive the Einstein radius and its angular size.
Solution 23.1.1

The basic equation for the deflection angle, given in the investigation, can be worked into the following form
by multiplying by b and putting the right-hand side over a common denominator:

4G

c2

= bQ(DLs + DL)/DLDLS-

Solving for b gives the required answer.
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Chapter 24

Exercise 24.1.1: Age of the Universe [page 348]

Assume that the Hubble constant has a value 70 km s=! Mpc~'. First convert this value to more standard units
(s7') by converting megaparsecs to kilometers. Then take its reciprocal to find that the approximate age of
the Universe is 14 billion years. If the Hubble constant is larger, what does this do to the approximate age?

Solution 24.1.1

Converting kilometers to meters requires multiplying by pwrteninline3; converting megaparsecs to meters
requires dividing by 3.09 x 10>, The result is that the Hubble constant has the value 2.3 x 10="*s~". The
reciprocal of this is a typical timescale for the expansion of the universe: 4.4 x 10'"s, or 1.4 x 10*° yr. Raising
the Hubble constant makes the Universe expand faster and so reduces its apparent age.

Exercise 24.2.1: Energy density of the cosmic microwave background [page 356]

(a) Use Equation 24.7 on page 356 to calculate the energy density of the cosmic microwave background, given
its temperature of 2.7 K. (b) Show from this that the equivalent mass-density of the microwave background is
4.5 x 10 kgm?.

Solution 24.2.1

(a) If we put in the values of the fundamental constants from the Appendix and use the given value of the
temperature, we get €,, = 4.02 x 107"*J m™3.
(b) We get a mass density by converting energy to mass by dividing by ¢*: p,, = 4.5 x 107 ** kg m 2.

Exercise 24.2.2: Motion through the cosmic background [page 356]

According to measurements by COBE, the temperature of the cosmic microwave background has a maximum
value on the sky that is 3.15 mK warmer than the average, and it has a minimum in a diametrically opposite
direction that is 3.15mK cooler than the average, after correcting for the motion of the satellite around the
Earth and that of the Earth around the Sun. (The abbreviation mK stands for millikelvin.) Give an argument
to show that the observed radiation should be black-body at a red- or blueshifted temperature. Then show

that the speed of the Sun relative to the cosmic rest frame is 3.5 x 10° ms™*.

Solution 24.2.2

A sufficient argument is that, since a black body is defined to be a body that absorbs light, a body should be
a black body regardless of the speed of the observer: it should be a relativistically invariant notion. Therefore,
if a body such as the Universe emits black body radiation as seen by one experimenters, it should emit black
body radiation as seen by all other experimenters. The only thing that can change with the velocity of the
experimenter is the observed temperature.
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If we take the expression for the flux from a black body, Equation 10.1 on page 111, and replace the
wavelength A by A\, = (1+2)A, which is the effect of a redshift, then we see that if we define a new temperature
T,=T/(1+ z), we get
_s2rheé® 1

A5 ehe/NT

F\(redsnifted) = (1 + 2)

This shows that the shape of the curve is exactly that of a black body with the new temperature, but the
height of the curve — the total energy flux — is reduced by a large factor.

This reduction is not a contradiction to the fact that the flux emitted by a blackbody depends only on its
temperature. Equation 10.1 on page 111 gives us the flux inside the black-body or just at its surface. Clearly,
the flux must fall off with distance if we are outside the black body. Moreover, if the black body is moving
away from us then there will be other redshift factors. The numerous factors of 1 + z affecting the amplitude
of the cosmic black body radiation come from the fact that we are observing radiation emitted by a surface
that is very far away (because the radiation was emitted very long ago) and that is receding from us at a high
speed (as a result of the cosmological expansion). What is not affected by distance or speed is the spectrum,
the shape of the curve.

Now, the result of this is that we can interpret the observed spectrum as telling us that we are moving
toward the source of the black body radiation in one direction and away from it in the opposite direction. This
is consistent if the source is the Universe as a whole, or more properly if all parts of the Universe radiate the
same radiation. The speed is just deducible from the redshift: v = cz. Since the change in the temperature is
0T = 2T, we have v = 0T /T = 3.5 x 10°ms~.

Exercise 24.3.1: The emptiness of the Universe [page 363]

Since the luminous mass in galaxies is primarily in hydrogen, what would be the mean volume occupied by
a single hydrogen atom if the mass in galaxies were smoothed out over the entire Universe? (Use the mean
density of visible matter given in the text, 5 x 107*°kgm2.)

Solution 24.3.1

The mass of a hydrogen atom is about 1.67 x 10727 kg, so the number of them per unit volume is the density
divided by the mass: 2x 107> kgm=/1.67 x 107" kg = 0.12 atoms per cubic meter. Inverting this gives about
8 cubic meters per atom of hydrogen. Space is really very empty indeed!

Exercise 24.3.2: Local accelerations [page 363]

The nearest large galaxy to us is the Andromeda galaxy (also called M31), which is about 0.5 Mpc away and is
falling towards our Galaxy, not receding from it. Take the mass of our Galaxy to be 10" Mg and calculate the
gravitational acceleration produced by our galaxy on the Andromeda galaxy, using the formula a = —GM /r*.
Calculate the cosmological acceleration given by Equation 24.17 on page 363 at a distance of 0.5 Mpc, using
the critical density p.. Compare the two accelerations. Are motions within the local group of galaxies (those
dominated by Andromeda and ourselves) strongly affected by the expansion of the Universe?

Solution 24.3.2

The acceleration of M31 towards our Galaxy is GM/r*, where M = 10** Mg = 2 x 10* kg and r = 0.5 Mpc =
1.5 %10 m. The arithmetic gives a = 6 x 10~"*m s~ 2. The cosmological acceleration would be 2 x 10~ **m s~>.
Now, since Andromeda is already falling towards us, the local group is gravitationally bound. The conclusion
is that the local gravitational forces within the group will dominate any cosmological effects: regardless of
what the Universe does, the local group will remail bound together. Cosmological effects will dominate only
over larger distance scales.

Exercise 24.3.3: Relation between () and q [page 363]
Derive Equation 24.14 on page 362 from Equations 24.11, 24.10, and 24.18.
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Solution 24.3.3
From Equation 24.10 on page 361 and Equation 24.11 on page 361 we find

B p _ 8xnGp
© 3HZ/8xG  3HZ '

Q

The result follows immediately if this is compared with Equation 24.18 on page 363.
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Gravity from the ground up

Solutions to selected exercises

Chapter 25

Exercise 25.1.1: Radiation-dominated universe [page 371]

Find the dependence of the scale-factor on time for the radiation-dominated Universe. The analysis is similar
to our derivation for the matter-dominated Universe above. The only difference is that, as explained above,
the factor p 4+ 3p/c® is proportional to R~*. Show from this that R o ¢°.

Solution 25.1.1

Following the same steps as in the investigation, we find that the acceleration equation imples that R/t*
should be proportional to 1/R?, since the density is proportional to 1/R* and this is multiplied by R (which
is contained in d) to get the acceleration. Solving for R gives R  t*.

Exercise 25.2.1: Random clumping [page 378]

Experiment with random clumping using a tossed coin as your random-number generator. Use three successive
tosses to generate a number between 0 and 7, using its binary representation. That is, if the coin comes up
heads assign a 1 to a digit, and if tails a 0. With three tosses you get three digits, say 010, and that is the
number 2. (The digits abc represent the number 4a + 2b + ¢.) Record each such number you get. Generate
a large set of them, say 80. Each number should come up on average ten times, but some will come up more
often and some less, at random. The excess over the average should be, according to the argument above,
10*/2~ 3. You should expect some numbers to come up at least 13 times, and others only 7. You might expect
one bin to have twice as large a fluctuation, i.e. to reach 16 or 4. Now go on and do twice as many, 160
numbers. (You need 480 coin tosses to do this!) Then the average will be 20 and the expected fluctuation
202 ~4.5. Although the fluctuation is larger in this case, it is a smaller fraction of the average, so that the
distribution of numbers among the bins is actually smoother. If you have the stamina, go to 320 numbers.
Verify that the typical fluctuation is of order six.

Solution 25.2.1

Here is a table of the results of my coin-tossing. It shows the number of times a given value of the three-digit
binary number came up in each set of trials, and for comparison the number of times it would be expected
to come up if all numbers were equally represented. It also shows the average of all the three-digit binary
numbers that came out in each trial.

Trials Expected 0s 1’'s 2’s 3s 4's 5s 6’s 7’s Average

80 10 9 § 10 12 13 9 10 9 3.55
160 20 24 19 26 17 16 21 20 17 3.32
320 40 42 39 36 37 39 47 40 40 3.54

Exercises reproduced from Gravity from the ground up, published by Cambridge University Press (Cambridge, 2003). All
material ©Bernard Schutz 2003. This material may be freely copied (on paper or electronically) and redistributed for educational
purposes, provided it is unaltered and this copyright notice remains attached. It may not be sold, included in other publications
for sale, or otherwise used for commercial gain without the permission of the author.
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Now, we see that the maximum excursion away from the expected value of 10 in the first set of trials is 3:
there were 13 occurences of the number 4, while only 10 were expected. This is consistent with the idea that
fluctuations of order 10*/? are expected. In the second set of trials, with 160 numbers generated at random, the
expected number of occurrences of each value would be 20, and the maximum deviation from this was 6: the
number 2 came up 26 times. This is a little larger than the expected fluctuation of 20*/2, which is about 4.5.
In the final trial, where I generated 320 random numbers, we expect each to occur 40 times and the maximum
difference from this is 7: the number 5 came up 47 times. This is consistent with the expected fluctuation of
402 or 6.3.

In random trials, anything can happen, but if there are enough trials then they should behave on average in
a way consistent with expectations. Thus, in the trial which generated 160 numbers, the maximum fluctuation
was slightly large, but if this trial were repeated many times there would also be trials in which the fluctuations
were smaller than expected. If you want to explore this more effectively, don’t use a coin: use a computer!



